

CONFIGURATION GUIDE

Brocade 5600 vRouter Policy-based Routing Configuration Guide

Supporting Brocade 5600 vRouter 4.2R1

^e 2016, Brocade Communications Systems, Inc. All Rights Reserved.

Brocade, Brocade Assurance, the B-wing symbol, ClearLink, DCX, Fabric OS, HyperEdge, ICX, MLX, MyBrocade, OpenScript, VCS, VDX, Vplane, and Vyatta are registered trademarks, and Fabric Vision is a trademark of Brocade Communications Systems, Inc., in the United States and/or in other countries. Other brands, products, or service names mentioned may be trademarks of others.

Notice: This document is for informational purposes only and does not set forth any warranty, expressed or implied, concerning any equipment, equipment feature, or service offered or to be offered by Brocade. Brocade reserves the right to make changes to this document at any time, without notice, and assumes no responsibility for its use. This informational document describes features that may not be currently available. Contact a Brocade sales office for information on feature and product availability. Export of technical data contained in this document may require an export license from the United States government.

The authors and Brocade Communications Systems, Inc. assume no liability or responsibility to any person or entity with respect to the accuracy of this document or any loss, cost, liability, or damages arising from the information contained herein or the computer programs that accompany it.

The product described by this document may contain open source software covered by the GNU General Public License or other open source license agreements. To find out which open source software is included in Brocade products, view the licensing terms applicable to the open source software, and obtain a copy of the programming source code, please visit http://www.brocade.com/support/oscd.

Contents

Preface	
Document conventions	
Text formatting conventions	5
Command syntax conventions	5
Notes, cautions, and warnings	6
Brocade resources	
Contacting Brocade Technical Support	
Brocade customers	
Brocade OEM customers	7
Document feedback	7
About This Guide	9
Policy-based Routing	
Defining a routing policy	
Routing policy rules	
PBR behavior	
Packet forwarding path	
Configuration Examples	
PBR routing example	
Binding interfaces to PBR tables	
Policy-based Routing Commands	17
clear policy	
interfaces dataplane <interface> policy route pbr <name></name></interface>	
policy route pbr <name> rule <rule-number></rule-number></name>	
policy route pbr <name> rule <rule-number> action <action></action></rule-number></name>	
policy route pbr <name> rule <rule-number> address-family <address-family></address-family></rule-number></name>	
policy route pbr <name> rule <rule-number> description <description></description></rule-number></name>	
policy route pbr <name> rule <rule=number> destination <destination></destination></rule=number></name>	
policy route pbr <name> rule <rule-number> disable</rule-number></name>	
policy route pbr <name> rule <rule-number> icmp <icmp></icmp></rule-number></name>	
policy route pbr <name> rule <rule-number> icmpv6 <icmpv6></icmpv6></rule-number></name>	
policy route pbr <name> rule <rule-number> ipv6-route type <type-number></type-number></rule-number></name>	
policy route pbr <name> rule <rule-number> log</rule-number></name>	
policy route pbr <name> rule <rule-number> port <port></port></rule-number></name>	
policy route pbr <name> rule <rule-number> pcp <pcp-number></pcp-number></rule-number></name>	
policy route pbr <name> rule <rule-number> protocol <protocol></protocol></rule-number></name>	
policy route pbr <name> rule <rule-number> source address <address></address></rule-number></name>	
policy route pbr <name> rule <rule-number> source mac-address <address></address></rule-number></name>	
policy route pbr <name> rule <rule-number> source port <port></port></rule-number></name>	
policy route pbr <name> rule <rule-number> table <table-number></table-number></rule-number></name>	
policy route pbr <name> rule <rule-number> tcp flags <tcp-flag></tcp-flag></rule-number></name>	
show policy route <interface></interface>	
show policy route table	
Related commands	

СМР Турез	. 53
CMPv6 Types	55
Supported Interface Types	57
_ist of Acronyms	59

Preface

•	Document conventions	5
•	Brocade resources	6
•	Contacting Brocade Technical Support	6
•	Document feedback	7

Document conventions

The document conventions describe text formatting conventions, command syntax conventions, and important notice formats used in Brocade technical documentation.

Text formatting conventions

Text formatting conventions such as boldface, italic, or Courier font may be used in the flow of the text to highlight specific words or phrases.

Format	Description
bold text	Identifies command names
	Identifies keywords and operands
	Identifies the names of user-manipulated GUI elements
	Identifies text to enter at the GUI
<i>italic</i> text	Identifies emphasis
	Identifies variables
	Identifies document titles
Courier font	Identifies CLI output
	Identifies command syntax examples

Command syntax conventions

Bold and italic text identify command syntax components. Delimiters and operators define groupings of parameters and their logical relationships.

Convention	Description
bold text	Identifies command names, keywords, and command options.
<i>italic</i> text	Identifies a variable.
value	In Fibre Channel products, a fixed value provided as input to a command option is printed in plain text, for example, show WWN.
[]	Syntax components displayed within square brackets are optional.
	Default responses to system prompts are enclosed in square brackets.
{ x y z }	A choice of required parameters is enclosed in curly brackets separated by vertical bars. You must select one of the options.
	In Fibre Channel products, square brackets may be used instead for this purpose.
x y	A vertical bar separates mutually exclusive elements.
<>	Nonprinting characters, for example, passwords, are enclosed in angle brackets.

Convention

\

Description

Repeat the previous element, for example, *member*[*member*...]. Indicates a "soft" line break in command examples. If a backslash separates two lines of a command input, enter the entire command at the prompt without the backslash.

Notes, cautions, and warnings

Notes, cautions, and warning statements may be used in this document. They are listed in the order of increasing severity of potential hazards.

NOTE

A Note provides a tip, guidance, or advice, emphasizes important information, or provides a reference to related information.

ATTENTION

An Attention statement indicates a stronger note, for example, to alert you when traffic might be interrupted or the device might reboot.

CAUTION

A Caution statement alerts you to situations that can be potentially hazardous to you or cause damage to hardware, firmware, software, or data.

DANGER

A Danger statement indicates conditions or situations that can be potentially lethal or extremely hazardous to you. Safety labels are also attached directly to products to warn of these conditions or situations.

Brocade resources

Visit the Brocade website to locate related documentation for your product and additional Brocade resources.

You can download additional publications supporting your product at www.brocade.com. Select the Brocade Products tab to locate your product, then click the Brocade product name or image to open the individual product page. The user manuals are available in the resources module at the bottom of the page under the Documentation category.

To get up-to-the-minute information on Brocade products and resources, go to MyBrocade. You can register at no cost to obtain a user ID and password.

Release notes are available on MyBrocade under Product Downloads.

White papers, online demonstrations, and data sheets are available through the Brocade website.

Contacting Brocade Technical Support

As a Brocade customer, you can contact Brocade Technical Support 24x7 online, by telephone, or by e-mail. Brocade OEM customers contact their OEM/Solutions provider.

Brocade customers

For product support information and the latest information on contacting the Technical Assistance Center, go to http://www.brocade.com/services-support/index.html.

If you have purchased Brocade product support directly from Brocade, use one of the following methods to contact the Brocade Technical Assistance Center 24x7.

Online	Telephone	E-mail
 Preferred method of contact for non-urgent issues: My Cases through MyBrocade Software downloads and licensing tools Knowledge Base 	 Required for Sev 1-Critical and Sev 2-High issues: Continental US: 1-800-752-8061 Europe, Middle East, Africa, and Asia Pacific: +800-AT FIBREE (+800 28 34 27 33) For areas unable to access toll free number: +1-408-333-6061 Toll-free numbers are available in many countries. 	support@brocade.com Please include: Problem summary Serial number Installation details Environment description

Brocade OEM customers

If you have purchased Brocade product support from a Brocade OEM/Solution Provider, contact your OEM/Solution Provider for all of your product support needs.

- OEM/Solution Providers are trained and certified by Brocade to support Brocade® products.
- Brocade provides backline support for issues that cannot be resolved by the OEM/Solution Provider.
- Brocade Supplemental Support augments your existing OEM support contract, providing direct access to Brocade expertise. For more information, contact Brocade or your OEM.
- For questions regarding service levels and response times, contact your OEM/Solution Provider.

Document feedback

To send feedback and report errors in the documentation you can use the feedback form posted with the document or you can e-mail the documentation team.

Quality is our first concern at Brocade and we have made every effort to ensure the accuracy and completeness of this document. However, if you find an error or an omission, or you think that a topic needs further development, we want to hear from you. You can provide feedback in two ways:

- Through the online feedback form in the HTML documents posted on www.brocade.com.
- By sending your feedback to documentation@brocade.com.

Provide the publication title, part number, and as much detail as possible, including the topic heading and page number if applicable, as well as your suggestions for improvement.

Preface

About This Guide

This guide describes how to define and configure routing policies on the Brocade 5600 vRouter (referred to as a virtual router, vRouter, or router in the guide).

About This Guide

Policy-based Routing

• Introduction.....

Introduction

Policy-based routing (PBR) enables you to use IP traffic rules to classify traffic based on its attributes and apply processing differentially according to the classification, and to selectively route IP packets, for example, to an alternate next hop. PBR on the Brocade vRouter is supported just on incoming Layer 3 and Layer 4 traffic.

All packets received on an interface are considered for policy-based routing provided that interface is assigned a routing policy.

When no routing policies are applied, routing decisions are made by using the default (main) routing table (Table 254) of the system.

PBR policies can be applied to data plane interfaces for inbound traffic, but not to loopback, tunnel, bridge, OpenVPN, VTI, and IP unnumbered interfaces.

On the Brocade vRouter, you cannot apply policy based routing to locally generated packets.

Defining a routing policy

The routing policy classifies traffic and specifies the handling that should take place for different classes. This classification and handling are accomplished by using a set of policy rules.

Rules are configured with match criteria that include an extensive set of attributes—including protocol, source and destination addresses and ports, fragmentation, ICMP or ICMPv6 type, and TCP flags. You can also preconfigure groups of addresses, ports, and networks and refer to these groups in policy rules.

The routing policy must be applied to an interface for the policy to be effective.

To implement policy-based routing, perform the following steps:

- 1. Define the policy rules.
- 2. Attach the policy to an ingress interface.
- 3. Create a route in a PBR table other than Table 254.

NOTE

Table 254 is also known as the main table or default table.

Routing policy rules

Packets that match the PBR rule criteria do one of the following:

- They are dropped (if the **drop** action is set).
- They are routed by using a specific PBR routing table.

Packets that match the rule parameters are considered for policy-based routing. As many as 9,999 rules in a policy are supported. If no match criteria are specified, all packets are routed according to the default Table 254.

The packets that do not match any policy rule are routed according to the routes in the main table.

Routing policy rules are executed in numeric sequence, from lowest to highest. You can renumber rules by using the **rename** command in configuration mode (refer to *Brocade 5600 vRouter Basic System Configuration Guide*).

11

NOTE

To avoid having to renumber routing policy rules, a good practice is to number rules in increments of 10. This increment allows room for the insertion of new rules within the policy.

PBR behavior

Routes remain persistent in the controller. If the data plane goes down, and up, the routes are automatically re-established without the need for reconfiguration.

PBR rules can be changed dynamically and does not require the rebinding of the PBR policy to an interface.

Configuration for VLAN-based classification, virtual interface (vif), MAC address, packet mangling, and so on, are not supported.

The controller automatically continuously resyncs the route information to the data plane.

Multiple PBR policies can be applied to an interface. For best results, we recommend that these policies are unique.

Packet forwarding path

When enabled, PBR processes incoming packets after packet validation and firewall action. Packets received by the data plane ingress interfaces for transmission to the egress interface follow the forwarding path listed below. There is only a single Virtual Routing and Forwarding (VRF) instance for PBR.

- 1. Packet validation and reassembly
- 2. Firewall
- 3. DNAT
- 4. PBR classification, route table ID determination
- 5. SNAT
- 6. Firewall
- 7. QoS
- 8. Transmit out of an egress interface

Configuration Examples

• PBR routing example...

PBR routing example

The following figure shows a simple site that uses PBR on the Brocade vRouter (R1) to route traffic from two different internal subnets to two Internet links.

The following conditions apply to this scenario:

- All Internet-bound traffic from subnet 192.168.10.0/24 is routed out interface dpOp1p1.
- All Internet-bound traffic from subnet 192.168.20.0/24 is routed out interface dpOp1p2.

FIGURE 1 Routing using PBR

To configure the scenario, perform the following steps in configuration mode.

TABLE 1 Routing using PBR

Step	Command
Create Rule 10 and specify the destination address to match. In this	vyatta@R1# set policy route pbr myroute rule 10 address-family ipv4 vyatta@R1# set policy route pbr myroute rule 10 action accept

TABLE 1 Routing using PBR (continued)

Step	Command
case, any destination address is a match.	vyatta@R1# set policy route pbr myroute rule 10 destination address 0.0.0.0/0
Specify the source address to match. In this case, any address on subnet 192.168.10.0/24 is a match.	vyatta@R1# set policy route pbr myroute rule 10 source address 192.168.10.0/24
Specify that all matching packets use alternate routing table 1.	vyatta@R1# set policy route pbr myroute rule 10 table 1
Create rule 20 and specify the destination address to match. In this	vyatta@R1# set policy route pbr myroute rule 20 address-family ipv4 vyatta@R1# set policy route pbr myroute rule 20 action accept
case, any destination address is a match.	vyatta@R1# set policy route pbr myroute rule 20 destination address 0.0.0.0/0
Specify the source address to match. In this case, any address on subnet 192.168.20.0/24 is a match.	vyatta@R1# set policy route pbr myroute rule 20 source address 192.168.20.0/24
Specify that all matching packets use alternate routing table 2.	vyatta@R1# set policy route pbr myroute rule 20 table 2
Commit the changes.	vyatta@R1# commit
Show the policy- based routing configuration.	<pre>vyatta@Rl# show policy route policy { route { pbr myroute {</pre>

TABLE 1 Routing using PBR (continued)

Step	Command
	} } }
Create the alternative routing table 1.	vyatta@R1# set protocols static table 1 route 0.0.0.0/0 next-hop 12.34.56.11
Create the alternative routing table 2.	vyatta@R1# set protocols static table 2 route 98.76.54.0/24 next-hop 98.76.54.22
Commit the change.	vyatta@R1# commit
Show the alternate routing table configuration.	<pre>vyatta@R1# show protocols static static { table 1 { route 12.34.56.0/24 { next-hop 12.34.56.11 } table 2 { route 98.76.54.0/24 { next-hop 98.76.54.22 } } }</pre>
Apply the IP addresses to the corresponding data plane interfaces.	vyatta@R1# set interfaces dataplane dp0p1p1 address 12.34.56.33/24 vyatta@R1# set interfaces dataplane dp0p1p2 address 98.76.54.44/24 vyatta@R1# set interfaces dataplane dp0p1p3 address 192.168.10.254/24 vyatta@R1# set interfaces dataplane dp0p1p4 address 192.168.20.254/24
Apply the policy route with dpOp1p3, and dpOp1p4 interfaces	vyatta@R1# set interfaces dataplane dp0p1p3 policy route pbr myroute vyatta@R1# set interfaces dataplane dp0p1p4 policy route pbr myroute
Show the data plane interface configuration.	<pre>vyatta@R1# show interfaces dataplane dataplane dpOp1p1 { address 0.0.0.0/0 } dataplane dpOp1p2 { address 98.76.54.44/24 } dataplane dpOp1p3 { address 192.168.10.254/24 policy { route { pbr myroute } } dataplane dpOp1p4 { address 192.168.20.254/24 policy { route { pbr myroute } } }</pre>

TABLE 1 Routing using PBR (continued)

Step	Command
	}
	,

Binding interfaces to PBR tables

To configure an interface-based static route in a policy route table, perform the following steps:

Step	Command
Configure the interface route for the interface.	vyatta@R1# set protocols static table 10 interface- route 192.168.20.254/24 nexthop-interface dp0p256p1 distance 25
View the configuration.	<pre>vyatta@vyatta:~\$ show protocols protocols { static { table 10 { interface-route 192.168.20.254/24 { nexthop-interface dp0p256p1 { distance 25</pre>
Commit the change.	vyatta@R1# commit

Policy-based Routing Commands

•	clear policy	
•	interfaces dataplane <interface> policy route pbr <name></name></interface>	
•	policy route pbr <name> rule <rule-number></rule-number></name>	
•	policy route pbr <name> rule <rule-number> action <action></action></rule-number></name>	
•	policy route pbr <name> rule <rule-number> address-family <address-family></address-family></rule-number></name>	
•	policy route pbr <name> rule <rule-number> description <description></description></rule-number></name>	
•	policy route pbr <name> rule <rule-number> destination <destination></destination></rule-number></name>	
•	policy route pbr <name> rule <rule-number> disable</rule-number></name>	
•	policy route pbr <name> rule <rule-number> icmp <icmp></icmp></rule-number></name>	
•	policy route pbr <name> rule <rule-number> icmpv6 <icmpv6></icmpv6></rule-number></name>	
•	policy route pbr <name> rule <rule-number> ipv6-route type <type-number></type-number></rule-number></name>	
•	policy route pbr <name> rule <rule-number> log</rule-number></name>	
•	policy route pbr <name> rule <rule-number> port <port></port></rule-number></name>	
•	policy route pbr <name> rule <rule-number> pcp <pcp-number>ber</pcp-number></rule-number></name>	
•	policy route pbr <name> rule <rule-number> protocol <protocol></protocol></rule-number></name>	
•	policy route pbr <name> rule <rule-number> source address <address></address></rule-number></name>	
•	policy route pbr <name> rule <rule-number> source mac-address <address></address></rule-number></name>	
•	policy route pbr <name> rule <rule-number> source port <port></port></rule-number></name>	
•	policy route pbr <name> rule <rule-number> table <table-number></table-number></rule-number></name>	
•	policy route pbr <name> rule <rule-number> tcp flags <tcp-flag></tcp-flag></rule-number></name>	
•	show policy route <interface></interface>	
•	show policy route table	
•	Related commands	

clear policy

Clears the statistics for route policies.

Syntax

clear policy

Modes

Operational mode

Usage Guidelines

Use this command to clear the statistics for policy-based routing.

interfaces dataplane <interface> policy route pbr <name>

Applies an IP routing policy to inbound traffic on an interface.

Syntax

set interfaces dataplane interface policy route pbr name

delete interfaces dataplane interface policy route pbr [name]

show interfaces interface policy route pbr [name]

Parameters

interface

The type of interface. For detailed keywords and arguments that can be specified as interface types, refer to Supported Interface Types on page 57.

policy route pbr name

An IP routing policy.

Modes

Configuration mode

Configuration Statement

```
interfaces dataplane interface {
    policy {
        route {
            pbr name
        }
    }
}
```

Usage Guidelines

A routing policy has no effect on traffic traversing the system until it has been applied to an interface.

You must specify the address-family, action, and table leaf nodes to configure a routing policy. It is recommended to use the **delete policy route pbr** *name* **rule** *number* command to delete a routing policy.

NOTE

Policy-based routing policies can be applied to data plane interfaces, but not on loopback, tunnel, bridge, OpenVPN, or VTI interfaces.

To use the policy-based routing feature, you must define a routing policy by using the **set policy route pbr** *name* **rule** *number* command, and then apply the routing policy to interfaces by using a statement like this one. Once applied, the rule set acts as a packet filter.

Use the **set** form of this command to apply an IP routing policy to an interface.

Use the **delete** form of this command to remove an IP routing policy from an interface.

Use the **show** form of this command to display an IP routing policy configuration for an interface.

policy route pbr <name> rule <rule-number>

Defines an IP routing policy rule.

Syntax

set policy route pbr *name* rule *rule-number* delete policy route pbr *name* rule [*rule-number*] show policy route pbr *name* rule

Parameters

name

The name of an IP routing policy.

rule-number

The numeric identifier of the rule. Rule numbers determine the order in which rules are executed. Each rule must have a unique rule number. The numbers range from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

Modes

Configuration mode

Configuration Statement

```
policy {
    route {
        pbr name {
            rule rule-number
            }
        }
    }
}
```

Usage Guidelines

A policy identifies traffic that matches parameters and specifies which routing table to use. The table defines the route for a packet to take. A routing policy is a named collection of as many as 9,999 packet-classification rules. When applied to an interface, the policy rule classifies incoming traffic.

You must specify the address-family, action, and table leaf nodes to configure a routing policy. It is recommended to use the **delete policy route pbr** *name* **rule** *number* command to delete a routing policy.

Use the set form of this command to create a rule.

Use the **delete** form of this command to delete an existing IP routing policy.

Use the **show** form of this command to display a rule.

policy route pbr <name> rule <rule-number> action <action>

Defines the action for an IP routing policy rule.

Syntax

set policy route pbr name rule rule-number action { drop | accept }

delete policy route pbr name rule rule-number action [drop | accept]

show policy route pbr name rule rule-number action

Parameters

name

The name of an IP routing policy.

rule-number

The numeric identifier of the rule. Rule numbers determine the order in which rules are executed. Each rule must have a unique rule number. The numbers range from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

action

The action for an IP routing policy. The actions for an IP routing policy are accept and drop.

accept

Accepts the packet.

drop

Drops the packet silently.

Modes

Configuration mode

Configuration Statement

Usage Guidelines

You must specify the address-family, action, and table leaf nodes to configure a routing policy. It is recommended to use the **delete policy route pbr** *name* **rule** *number* command to delete a routing policy.

If a rule does not explicitly drop a packet in the action, the PBR action is to accept the packet, which causes it to be sent to the specified alternate routing table for lookup and forwarding.

An applied policy can only be deleted after first removing it from an assigned interface.

Use the **set** form of this command to set the action for a rule.

Use the **delete** form of this command to remove the action for a rule.

Use the **show** form of this command to display a rule within an IP routing policy.

policy route pbr <name> rule <rule-number> address-family <addressfamily>

Defines the address family for an IP routing policy rule.

Syntax

set policy route pbr *name* rule *rule-number* address-family [ipv4 | ipv6]

delete policy route pbr name rule rule-number address-family [ipv4 | ipv6]

show policy route pbr name rule rule-number address-family

Parameters

name

The name of an IP routing policy. The policy name must be unique and must not be used with other PBR policy commands.

rule-number

The numeric identifier of the rule. Rule numbers determine the order in which rules are executed. Each rule must have a unique rule number. The numbers range from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

address-family

The address-family for an IP routing policy rule. The address-family for an IP routing policy are ipv4 and ipv6.

Modes

Configuration mode

Configuration Statement

Usage Guidelines

You must specify the address-family, action, and table leaf nodes to configure a routing policy. It is recommended to use the **delete policy route pbr** *name* **rule** *number* command to delete a routing policy.

Use the set form of this command to define the address family and routing protocol for an IP routing policy rule.

Use the delete form of this command to remove the address family and routing protocol for an IP routing policy rule.

Use the **show** form of this command to view the address family and routing protocol for an IP routing policy rule.

policy route pbr <name> rule <rule-number> description <description>

Provides a brief description for an IP routing policy rule.

Syntax

set policy route pbr name rule rule-number description description

delete policy route pbr name rule rule-number description

show policy route pbr name rule rule-number description

Parameters

name

The name of an IP routing policy.

rule-number

The numeric identifier of the rule. Rule numbers determine the order in which rules are executed. Each rule must have a unique rule number. The numbers range from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

description

A brief description for the rule. If the description contains spaces, it must be enclosed in double quotation marks (").

Modes

Configuration mode

Configuration Statement

```
policy {
   route {
      pbr name {
         rule rule-number {
               description description
         }
      }
   }
}
```

Usage Guidelines

You must specify the address-family, action, and table leaf nodes to configure a routing policy. It is recommended to use the **delete policy route pbr** *name* **rule** *number* command to delete a routing policy.

Use the set form of this command to provide a description for an IP routing policy rule.

Use the **delete** form of this command to remove a description for an IP routing policy rule.

Use the **show** form of this command to display a description for an IP routing policy rule.

policy route pbr <name> rule <rule-number> destination <destination>

Defines the destination address for an IP routing policy rule.

Syntax

set policy route pbr name rule rule-number destination { address address | mac-address mac-address | port port }

delete policy route pbr name rule rule-number destination [address | mac-address | port]

show policy route pbr name rule rule-number destination

Parameters

name

The name of an IP routing policy.

rule-number

The numeric identifier of a policy rule. Rule numbers determine the order in which rules are processed. Each rule must have a unique rule number. The number ranges from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

destination

The destination address for an IP routing policy rule. The destination address can be any of the following parameters.

address

Specifies an address to match. Address formats are as follows: address-group name: An address group that is configured with a list of addresses. *ip-address*: An IPv4 address. *ip-address*: An IPv4 network address, where 0.0.0.0/0 matches any network. *lip-address*: All IP addresses except the specified IPv4 address. *lip-address*: All IP addresses except the specified IPv4 network address. *ipv6-address*: An IPv6 address; for example, fe80::20c:29fe:fe47:f89. *ip-address*: An IPv6 network address, where ::/0 matches any network; for example, fe80::20c: 29fe:fe47:f88/64. *lipv6-address*: All IP addresses except the specified IPv6 address. *lip-address*: All IP addresses except the specified IPv6 address. *lip-address*: All IP addresses except the specified IPv6 address. *lip-address*: All IP addresses except the specified IPv6 network address. *lip-address*: All IP addresses except the specified IPv6 network address.

mac-address

Specifies a media access control (MAC) address to match. The address format is six 8-bit numbers, separated by colons, in hexadecimal; for example, 00:0a:59:9a:f2:ba.

NOTE

For policy based routing, the usefulness of this parameter is limited because the MAC address is on a local interface.

port

Specifies a port to match. Port formats are as follows:

- *port-group name*. A port group that is configured with a list of ports.
- port name: A port name as shown in /etc/services, for example, http.
- 1-65535: A port number in the range from 1 through 65535.
- start-end: A range of port numbers, for example, 1001-1005.

A packet is considered a match if it matches any port name or number specified in the group. Only one port group may be specified. The port group must already be defined.

destination

Specifies a media access control (MAC) address to match. The address format is six 8-bit numbers, separated by colons, in hexadecimal; for example, 00:0a:59:9a:f2:ba.

NOTE

For policy-based routing, the usefulness of this parameter is limited because the MAC address is on a local interface.

Modes

Configuration mode

Configuration Statement

Usage Guidelines

This match criterion specifies a group of addresses, ports, or networks for packet destination address.

A packet is considered a match for an address, a network, or a port group if it matches any host IP address, network address, or port name or number, respectively, in the group. However, if more than one group is specified, the packet must be a match for both groups to be considered a match. For example, if both an address group and a port group are specified, the destination of the packet must match at least one item in the address group and at least one item in the port group.

An address group may be specified with a port group.

If both an address and a port are specified, the packet is considered a match only if both the address and the port match.

Use the set form of this command to create or modify a rule within an IP routing policy.

Use the **delete** form of this command to remove a rule from an IP routing policy.

Use the **show** form of this command to display a rule within an IP routing policy.

policy route pbr <name> rule <rule-number> disable

Disables a routing policy rule.

Syntax

set policy route pbr *name* rule *rule-number* disable delete policy route pbr *name* rule *rule-number* disable show policy route pbr *name* rule *rule-number*

Command Default

The rule is enabled.

Parameters

name

The name of an IP routing policy.

rule-number

The numeric identifier of the rule. Rule numbers determine the order in which rules are executed. Each rule must have a unique rule number. The numbers range from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

Modes

Configuration mode

Configuration Statement

```
policy {
    route {
        pbr name {
            rule rule-number {
                disable
            }
        }
    }
}
```

Usage Guidelines

You must specify the address-family, action, and table leaf nodes to configure a routing policy. It is recommended to use the **delete policy route pbr** *name* **rule** *number* command to delete a routing policy.

Use the **set** form of this command to disable a routing policy rule.

Use the **delete** form of this command to re-enable a rule.

Use the **show** form of this command to display a routing policy rule.

policy route pbr <name> rule <rule-number> icmp <icmp>

Creates a routing policy rule to match Internet Control Message Protocol (ICMP) packets.

Syntax

set policy route pbr name rule rule-number icmp { type type-number [code code-number] | name name } delete policy route pbr name rule rule-number icmp [type [number code] | name] show policy route pbr name rule rule-number icmp [type [number code] | name]

Command Default

The rule is enabled.

Parameters

name

Name of a PBR group. The PBR group must be unique and must not be used with other PBR policy commands.

rule-number

The numeric identifier of the rule. Rule numbers determine the order in which rules are executed. Each rule must have a unique rule number. The numbers range from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

icmp

The ICMP packet that matches the routing policy rule. The ICMP packet identifiers are type, code, and name.

type-number

An IPv4 ICMP type number. Values range from 0 through 255.

code-number

An IPv4 ICMP code number. Values range from 0 through 255.

name

Specifies matching for ICMP type names. The default name is **any**.

Modes

Configuration mode

Configuration Statement

}

Usage Guidelines

You must specify the address-family, action, and table leaf nodes to configure a routing policy. It is recommended to use the **delete policy route pbr** *name* **rule** *number* command to delete a routing policy.

You can specify an ICMP type code by type; for example, 128 (echo-request), or by a type and code pair; for example, type 1 and code 4 (port-unreachable). Alternatively, you can specify the ICMP type code explicitly by using the **name** name parameter; for example, name echo-request.

For a list of ICMP codes and types, refer to ICMP Types on page 53.

Use the **set** form of this command to create a rule to match ICMP packets.

Use the **delete** form of this command to delete a rule that matches ICMP packets.

Use the **show** form of this command to display a rule that matches ICMP packets.

policy route pbr <name> rule <rule-number> icmpv6 <icmpv6>

Creates a routing policy rule to match Internet Control Message Protocol (ICMP) IPv6 packets.

Syntax

set policy route pbr name rule rule-number icmpv6 { type type-number [code code-number] | name name } delete policy route pbr name rule rule-number icmpv6 [type [number code] | name] show policy route pbr name rule rule-number icmpv6 [type [number code] | name]

Command Default

The rule is enabled.

Parameters

name

Name of a PBR group. The PBR group must be unique and must not be used with other PBR policy commands.

rule-number

The numeric identifier of the rule. Rule numbers determine the order in which rules are executed. Each rule must have a unique rule number. The numbers range from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

icmpv6

The ICMPv6 packet that matches the routing policy rule. The ICMPv6 packet identifiers are type, code, and name.

type-number

An IPv6 ICMP type number. Values range from 0 through 255.

code-number

An IPv6 ICMP code number. Values range from 0 through 255.

name

Specifies matching for ICMPv6 type names. The default name is any.

Modes

Configuration mode

Configuration Statement

}

Usage Guidelines

You must specify the address-family, action, and table leaf nodes to configure a routing policy. It is recommended to use the **delete policy route pbr** *name* **rule** *number* command to delete a routing policy.

You can specify an ICMPv6 type code by type; for example, 128 (echo-request), or by a type and code pair; for example, type 1 and code 4 (port-unreachable). Alternatively, you can specify the ICMPv6 type code explicitly by using the **name** name parameter; for example, name echo-request.

For a list of ICMPv6 codes and types, refer to ICMPv6 Types on page 55.

Use the **set** form of this command to create a rule to match ICMPv6 packets.

Use the **delete** form of this command to delete a rule that matches ICMPv6 packets.

Use the **show** form of this command to view a rule that matches ICMPv6 packets.

policy route pbr <name> rule <rule-number> ipv6-route type <type-number>

Defines the IPv6 route type to match for a routing policy rule.

Syntax

set policy route pbr name rule rule-number ipv6-route type type-number

delete policy route pbr name rule rule-number ipv6-route type

show policy route pbr name rule rule-number ipv6-route type

Parameters

name

Name of a PBR group. The PBR group must be unique and must not be used with other PBR policy commands.

rule-number

The numeric identifier of the rule. Rule numbers determine the order in which rules are executed. Each rule must have a unique rule number. The numbers range from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

ipv6-route

Specifies matching based on an IPv6 route.

type-number

IPv6 route-type. Values range from 0 through 255.

Modes

Configuration mode

Configuration Statement

Usage Guidelines

NOTE

This command can be used to block Type O routing headers in IPv6. RFC 5095 deprecates the use of Type O routing headers in IPv6 because they are a security risk.

You must specify the address-family, action, and table leaf nodes to configure a routing policy. It is recommended to use the **delete policy route pbr** *name* **rule** *number* command to delete a routing policy.

Use the set form of this command to define the IPv6 route type for a routing-policy rule set.

Use the **delete** form of this command to delete the IPv6 route type for the routing-policy rule set. Use the **show** form of this command to display the IPv6 route type for the routing-policy rule set.

policy route pbr <name> rule <rule-number> log

Enables logging for a routing policy rule.

Syntax

set policy route pbr *name* rule *rule-number* log delete policy route pbr *name* rule *number* log show policy route pbr *name* rule *number*

Command Default

Logging is disabled.

Parameters

name

The name of an IP routing policy.

rule-number

The numeric identifier of the rule. Rule numbers determine the order in which rules are executed. Each rule must have a unique rule number. The numbers range from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

Modes

Configuration mode

Configuration Statement

```
policy {
    route {
        pbr name {
            rule rule-number {
                 log
            }
        }
    }
}
```

Usage Guidelines

You must specify the address-family, action, and table leaf nodes to configure a routing policy. It is recommended to use the **delete policy route pbr** *name* **rule** *number* command to delete a routing policy.

When logging is enabled, any action taken is logged.

Use the set form of this command to enable logging for a routing policy rule.

Use the delete form of this command to restore the default behavior for logging, that is, actions are not logged.

Use the **show** form of this command to display whether logging is enabled or disabled.

policy route pbr <name> rule <rule-number> port <port>

Defines the source port name, number, range, or port group for a routing policy rule.

Syntax

set policy route pbr name rule rule-number { port [port | 1-65535 | start-end | port-group-name] } delete policy route pbr name rule rule-number [port [port | 1-65535 | start-end | port-group-name]] show policy route pbr name rule number [port]

Parameters

name

The name of an IP routing policy.

rule-number

The numeric identifier of a policy rule. Rule numbers determine the order in which rules are processed. Each rule must have a unique rule number. The number ranges from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

port [port | 1-65535 | start-end | port-group-name]

Applicable only when the protocol is TCP or UDP. A source port to match. The format of the port is any of the following:

port-name. The name of an IP service; for example, http. You can specify any service name in the /etc/services file.

1-65535: A port number. The numbers range from 1 through 65535.

start-end: A specified range of ports; for example, 1001-1005.

port-group-name. A port group. A packet is considered a match if it matches any port name or number specified in the group. Only one port group may be specified. The port group must already be defined.

This criterion specifies a group of addresses, ports, or networks for packet source address.

A packet is considered a match for an address, a network, or a port group if it matches any host IP address, network address, or port name or number, respectively, in the group. However, if more than one group is specified, the packet must be a match for both groups to be considered a match. For example, if both an address group and a port group are specified, the source of the packet must match at least one item in the address group and at least one item in the port group.

An address group may be specified with a port group.

If both an address and a port are specified, the packet is considered a match only if both the address and the port match.

Modes

Configuration mode

Configuration Statement

```
policy {
route {
pbr name {
rule rule-number {
port name
port 1-65535
```

```
port start-end
port port-group-name
}
}
}
```

Usage Guidelines

You must specify the address-family, action, and table leaf nodes to configure a routing policy. It is recommended to use the **delete policy route pbr** *name* **rule** *number* command to delete a routing policy.

This criterion specifies a port or a group of ports for packet source address for a routing policy rule.

A packet is considered a match for an address, a network, or a port group if it matches any host IP address, network address, or port name or number, respectively, in the group. However, if more than one group is specified, the packet must be a match for both groups in order to be considered a match. For example, if an address group and a port group are both specified, the packet's source must match at least one item in the address group and at least one item in the port group.

An address group can be specified together with a port group, and a network group can be specified together with a port group. You cannot specify both an address and a network group.

The address family must match the specified family by using the **set policy route pbr** *name* **rule** *number* **address-family ipv4** command.

Use the **set** form of this command to define the source for a routing policy rule.

Use the **delete** form of this command to remove the source for a routing policy rule.

Use the **show** form of this command to view the source for a routing policy rule.
policy route pbr <name> rule <rule-number> pcp <pcp-number>

Defines the 801.1 priority-code point number to match for a routing policy rule.

Syntax

set policy route pbr name rule rule-number pcp pcp-number

delete policy route pbr name rule rule-number pcp

show policy route pbr name rule rule-number pcp

Parameters

name

Name of a PBR group. The PBR group must be unique and must not be used with other PBR policy commands.

rule-number

The numeric identifier of the rule. Rule numbers determine the order in which rules are executed. Each rule must have a unique rule number. The numbers range from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

pcp-number

802.1 priority-code point number. Values range from 0 through 7.

Modes

Configuration mode

Configuration Statement

```
policy {
    route {
        pbr name {
            rule rule-number {
                pcp pcp-number
            }
        }
}
```

Usage Guidelines

You must specify the address-family, action, and table leaf nodes to configure a routing policy. It is recommended to use the **delete policy route pbr** *name* **rule** *number* command to delete a routing policy.

Use the set form of this command to define an 802.1 priority-code point for a routing-policy rule set.

Use the **delete** form of this command to delete the 802.1 priority-code point for the routing-policy rule set.

Use the **show** form of this command to display the 802.1 priority-code point for the routing-policy rule set.

policy route pbr <name> rule <rule-number> protocol <protocol>

Defines the protocol of an IP routing policy rule.

Syntax

set policy route pbr name rule rule-number protocol { text | 0-255 | all | name }

delete policy route pbr name rule rule-number protocol [text | 0-255 | all | name]

show policy route pbr name rule rule-number protocol

Parameters

name

The name of an IP routing policy.

rule-number

The numeric identifier of the rule. Rule numbers determine the order in which rules are executed. Each rule must have a unique rule number. The numbers range from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

protocol

The *protocol* is any of the following:

text: Matches packets by protocol type. Any protocol literals or numbers listed in the file /etc/protocols can be specified. The keywords **icmpv6** and **all** (for all protocols) are also supported.

O-255: An IP protocol number that ranges from 0 through 255.

all: All IP protocols.

! protocol: All IP protocols except for the specified name or number. Prefixing the protocol name with the negation operator (the exclamation mark) matches every protocol except the specified protocol. For example, !tcp matches all protocols except TCP.

This parameter matches the last, next-header field in the IP header chain. This match means that if the packet has no extension headers, it matches the next-header field in the main header. If the packet does have extension headers, the parameter matches the next-header field of the last extension header in the chain. In other words, the parameter always matches the ID of the transport-layer packet that is being carried.

Exercise care when employing more than one rule that uses the negation. Routing policy rules are evaluated sequentially, and a sequence of negated rules could result in unexpected behavior.

Modes

Configuration mode

Configuration Statement

```
policy {
   route {
      pbr name {
         rule rule-number {
                protocol
                text
                0-255
                all
                name
      }
   }
}
```

}

Usage Guidelines

You must specify the address-family, action, and table leaf nodes to configure a routing policy. It is recommended to use the **delete policy route pbr** *name* **rule** *number* command to delete a routing policy.

Use the set form of this command to define the protocol of an IP routing policy rule.

Use the **delete** form of this command to remove a protocol from a routing policy rule.

Use the **show** form of this command to view the protocol of a routing policy rule.

policy route pbr <name> rule <rule-number> source address <address>

Defines the source address for a routing policy rule.

Syntax

set policy route pbr name rule rule-number source address address

delete policy route pbr name rule rule-number source address [addresss]

show policy route pbr name rule rule-number source

Parameters

name

The name of an IP routing policy.

rule-number

The numeric identifier of a policy rule. Rule numbers determine the order in which rules are processed. Each rule must have a unique rule number. The number ranges from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

source

Specifies matching based on a source address.

address

Specifies an address to match. Address formats are as follows: address-group name: An address group that is configured with a list of addresses. *ip-address:* An IPv4 address. *ip-address:* An IPv4 network address, where 0.0.0.0/0 matches any network. *!ip-address:* All IP addresses except the specified IPv4 address. *!ip-address:* All IP addresses except the specified IPv4 network address. *!ip-address:* An IPv6 address; for example, fe80::20c:29fe:fe47:f89. *ip-address/prefix:* An IPv6 network address, where ::/0 matches any network; for example, fe80::20c: 29fe:fe47:f88/64. *!ipv6-address:* All IP addresses except the specified IPv6 address. *!ip-address:* All IP addresses except the specified IPv6 address.

Modes

Configuration mode

Configuration Statement

Usage Guidelines

This match criterion specifies a port or a group of ports for packet source address for a routing policy rule.

A packet is considered a match for an address, a network, or a port group if it matches any host IP address, network address, or port name or number, respectively, in the group. However, if more than one group is specified, the packet must be a match for both groups to be considered a match. For example, if both an address group and a port group are specified, the source of the packet must match at least one item in the address group and at least one item in the port group.

An address group may be specified with a port group.

If both an address and a port are specified, the packet is considered a match only if both the address and the port match.

Use the **set** form of this command to define the source for a routing policy rule.

Use the **delete** form of this command to remove the source for a routing policy rule.

Use the **show** form of this command to view the source for a routing policy rule.

policy route pbr <name> rule <rule-number> source mac-address <address>

Defines the source MAC address to match for a routing policy rule.

Syntax

set policy route pbr name rule number source mac-address address

delete policy route pbr name rule number source mac-address [address]

show policy route pbr name rule number source mac-address [address]

Parameters

name

Name of a PBR group. The PBR group must be unique and must not be used with other PBR policy commands.

rule-number

The numeric identifier of the rule. Rule numbers determine the order in which rules are executed. Each rule must have a unique rule number. The numbers range from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

source

Specifies matching based on a source address.

address

Media access control (MAC) address. The address format is six 8-bit numbers, separated by colons, in hexadecimal; for example, OO:Oa:59:9a:f2:ba.

Modes

Configuration mode

Configuration Statement

```
policy {
    route {
        pbr name {
            rule rule-number {
                source {
                    mac-address address
                }
        }
}
```

Usage Guidelines

NOTE

For policy based routing, the usefulness of this command is limited because the MAC address is on a local interface.

You must specify the address-family, action, and table leaf nodes to configure a routing policy. It is recommended to use the **delete policy route pbr** *name* **rule** *number* command to delete a routing policy.

Use the set form of this command to define a source MAC address for a routing-policy rule set.

Use the **delete** form of this command to delete the source MAC address for the routing-policy rule set. Use the **show** form of this command to display the source MAC address for the routing-policy rule set.

policy route pbr <name> rule <rule-number> source port <port>

Defines the source port name, number, range, or port group for a routing policy rule.

Syntax

set policy route pbr name rule rule-number source port [name | 1-65535 | start-end | port-group-name] delete policy route pbr name rule rule-number source port [name | 1-65535 | start-end | port-group-name] show policy route pbr name rule rule-number source port

Parameters

name

The name of an IP routing policy.

rule-number

The numeric identifier of a policy rule. Rule numbers determine the order in which rules are processed. Each rule must have a unique rule number. The number ranges from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

source

Specifies matching based on a source address.

port [name | 1-65535 | start-end | port-group-name]

Applicable only when the protocol is TCP or UDP. A source port to match. The format of the port is any of the following:

name: The name of an IP service; for example, http. You can specify any service name in the /etc/services file. *1-65535*: A port number. The numbers range from 1 through 65535.

start-end: A specified range of ports; for example, 1001-1005.

port-group-name. A port group. A packet is considered a match if it matches any port name or number specified in the group. Only one port group may be specified. The port group must already be defined.

This criterion specifies a group of addresses, ports, or networks for packet source address.

A packet is considered a match for an address, a network, or a port group if it matches any host IP address, network address, or port name or number, respectively, in the group. However, if more than one group is specified, the packet must be a match for both groups to be considered a match. For example, if both an address group and a port group are specified, the source of the packet must match at least one item in the address group and at least one item in the port group.

An address group may be specified with a port group.

If both an address and a port are specified, the packet is considered a match only if both the address and the port match.

Modes

Configuration mode

Configuration Statement

```
policy {
route {
pbr name {
rule rule-number {
```

```
source {
    port name
    port 1-65535
    port start-end
    port port-group-name
    }
    }
}
```

Usage Guidelines

This criterion specifies a port or a group of ports for packet source address for a routing policy rule.

You must specify the address-family, action, and table leaf nodes to configure a routing policy. It is recommended to use the **delete policy route pbr** *name* **rule** *number* command to delete a routing policy.

A packet is considered a match for an address, a network, or a port group if it matches any host IP address, network address, or port name or number, respectively, in the group. However, if more than one group is specified, the packet must be a match for both groups in order to be considered a match. For example, if an address group and a port group are both specified, the packet's source must match at least one item in the address group and at least one item in the port group.

Use the set form of this command to define the source for a routing policy rule.

Use the **delete** form of this command to remove the source for a routing policy rule.

Use the **show** form of this command to view the source for a routing policy rule.

policy route pbr <name> rule <rule-number> table <table-number>

Defines the table number for an IP routing policy rule.

Syntax

set policy route pbr name rule rule-number table table-number

delete policy route pbr name rule rule-number table [table-number]

show policy route pbr name rule rule-number

Parameters

name

The name of an IP routing policy. The policy name must be unique and must not be used with other PBR policy commands.

rule-number

The numeric identifier of the rule. Rule numbers determine the order in which rules are executed. Each rule must have a unique rule number. The numbers range from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

table-number

To match according to the PBR Table ID numbers 1 through 128. Performs alternate processing on packets satisfying the match criteria.

Modes

Configuration mode

Configuration Statement

```
policy {
    route {
        pbr name{
            rule rule-number {
                table table-number
            }
        }
    }
}
```

Usage Guidelines

You must specify the address-family, action, and table leaf nodes to configure a routing policy. It is recommended to use the **delete policy route pbr** *name* **rule** *number* command to delete a routing policy.

Use the set form of this command to define the address family or routing table ID for an IP routing policy rule.

Use the **delete** form of this command to remove the address family or routing table ID for a rule.

Use the **show** form of this command to view the address family or routing table ID for a rule.

The address family must match the specified family by using the **set policy route pbr** *name* **rule** *number* **address-family ipv4** command.

Use the **set** form of this command to define the source for a routing policy rule. Use the **delete** form of this command to remove the source for a routing policy rule. Use the **show** form of this command to view the source for a routing policy rule.

policy route pbr <name> rule <rule-number> tcp flags <tcp-flag>

Defines the types of TCP flags to be matched for a routing policy rule.

Syntax

set policy route pbr name rule rule-number tcp flags flags

delete policy route pbr name rule rule-number tcp flags [flags]

show policy route pbr name rule rule-number tcp flags

Parameters

name

The name of an IP routing policy.

rule-number

The numeric identifier of the rule. Rule numbers determine the order in which rules are executed. Each rule must have a unique rule number. The numbers range from 1 through 9999.

You can define multiple rules by creating more than one **rule** configuration node.

tcp-flags

The flags to be matched in a packet. The flags are any of SYN, ACK, FIN, RST, URG, and PSH. You can specify more than one flag in a list separated by commas.

Prefixing a flag name with the negation operator matches packets with that flag unset. You can also use I to match packets by not using a given TCP flag. For example, the list SYN, IACK, IFIN, IRST matches only packets with the SYN flag set and the ACK, FIN, and RST flags unset.

Modes

Configuration mode

Configuration Statement

Usage Guidelines

You must specify the address-family, action, and table leaf nodes to configure a routing policy. It is recommended to use the **delete policy route pbr** *name* **rule** *number* command to delete a routing policy.

Use the set form of this command to define the types of TCP flags to be matched for a routing policy rule.

Use the **delete** form of this command to remove the types of TCP flags to be matched for a routing policy rule.

Use the **show** form of this command to view the types of TCP flags to be matched for a routing policy rule.

show policy route <interface>

Displays routing policy configuration or statistics.

Syntax

show policy route interface

Parameters

interface

The name of an interface.

Modes

Operational mode

Usage Guidelines

A policy identifies traffic that matches parameters and specifies which table to use. The table defines the routes for a packet to take. A routing policy is a named collection of as many as 9,999 packet-classification rules. When applied to an interface, the policy rule classifies incoming traffic.

NOTE

The PBR rule counters count all of the matched packets regardless of the availability of the route.

Use this command in operational mode to display packet statistics for all PBR rules in all groups.

For example:

show policy route

vyatta@vyatta:~\$ show policy route _____ _____ Rulesets Information: PBR _____ _____ _____ PBR policy "myroute": Active on (dp0p1p3, in) ruleactionprotopacketsbytes10allowany00 condition - from 192.168.10.0/24 ipv4 table 1 0 allow any 0 condition - from 192.168.20.0/24 ipv4 table 2 20 PBR policy "myroute": Active on (dp0p1p4, in) ruleaction protopackets10allowany0 bytes ____ 0 condition - from 192.168.10.0/24 ipv4 table 1 20 allow any 0 condition - from 192.168.20.0/24 ipv4 table 2 0

show policy route table

Displays the configuration of the IP routing policy table.

Syntax

show policy route table

Modes

Operational mode

Usage Guidelines

Command Output

The **show policy route table** command displays the following information:

vyatta@vyatta#	show	policy	ro	ute tal	ole
PBR Group				Rule	Table
		myrout	te	10	1
		myrout	te	20	2
		myrout	te	10	1
		myrout	te	20	2

Output field	Description
PBR Group	Name of a PBR group.
Rule	Number of the IP policy rule that is configured for a PBR group.
Table	Number of the PBR table that is configured for a PBR group.

Related commands

The following table lists related commands that are documented elsewhere.

Related commands documented elsewhere		
protocols static table	The commands for creating alternate routing tables are described in <i>Brocade 5600 vRouter Basic Routing Configuration Guide</i>	
resources group address-group <group-name></group-name>	Defines a group of IP addresses that are referenced in firewall rules. (Refer to <i>Brocade 5600 vRouter Basic Routing Configuration Guide</i> .)	
resources group port-group <group-name></group-name>	Defines a group of ports that are referenced in firewall rules. (Refer to <i>Brocade 5600 vRouter Basic Routing Configuration Guide</i> .)	
show ip route table	The command for displaying the contents of an alternate routing table is described in <i>Brocade</i> 5600 vRouter Basic Routing Configuration Guide.	
firewall group	Routing policy match criteria support references to predefined groups of addresses, ports, and networks. Commands for defining such groups are described in <i>Brocade 5600 vRouter Firewall Configuration Guide</i> .	

ICMP Types

This appendix lists the Internet Control Messaging Protocol (ICMP) types defined by the Internet Assigned Numbers Authority (IANA).

The IANA has developed a standard that maps a set of integers onto ICMP types. The following table lists the ICMP types and codes defined by the IANA and maps them to the literal strings that are available in the Brocade vRouter.

TABLE 3 ICMP types

ICMP Type	Code	Literal	Description
0 - Echo reply	0	echo-reply	Echo reply (pong)
3 - Destination unreachable		destination- unreachable	Destination is unreachable
	0	network-unreachable	Destination network is unreachable
	1	host-unreachable	Destination host is unreachable
	2	protocol-unreachable	Destination protocol is unreachable
	3	port-unreachable	Destination port is unreachable
	4	fragmentation-needed	Fragmentation is required
	5	source-route-failed	Source route has failed
	6	network-unknown	Destination network is unknown
	7	host-unknown	Destination host is unknown
	9	network-prohibited	Network is administratively prohibited
	10	host-prohibited	Host is administratively is prohibited
	11	ToS-network-unreachable	Network is unreachable for ToS
	12	ToS-host-unreachable	Host is unreachable for ToS
	13	communication-prohibited	Communication is administratively prohibited
	14	host-precedence-violation	Requested precedence is not permitted.
	15	precedence-cutoff	Precedence is lower than the required minimum.
4 - Source quench	0	source-quench	Source is quenched (congestion control)
5 - Redirect message		redirect	Redirected message
	0	network-redirect	Datagram is redirected for the network
	1	host-redirect	Datagram is redirected for the host
	2	ToS-network-redirect	Datagram is redirected for the ToS and network
	3	ToS-host-redirect	Datagram is redirected for the ToS and host
8 - Echo request	0	echo-request	Echo request (ping)
9 - Router advertisement	0	router-advertisement	Router advertisement
10 - Router solicitation	0	router-solicitation	Router solicitation
11 - Time exceeded		time-exceeded	Time to live (TTL) has exceeded
	0	ttl-zero-during-transit	TTL has expired in transit

TABLE 3 ICMP types (continued)

ІСМР Туре	Code	Literal	Description
	1	ttl-zero-during-reassembly	Fragment reassembly time has exceeded
12 - Parameter problem: Bad IP header		parameter-problem	Bad IP header
	0	ip-header-bad	Pointer that indicates an error
	1	required-option-missing	Missing required option
13 - Timestamp	0	timestamp-request	Request for a timestamp
14 - Timestamp reply	0	timestamp-reply	Reply to a request for a timestamp
15 - Information request	0		Information request
16 - Information reply	0		Information reply
17 - Address mask request	0	address-mask-request	Address mask request
18 - Address mask reply	0	address-mask-reply	Address mask reply

ICMPv6 Types

This appendix lists the ICMPv6 types defined by the Internet Assigned Numbers Authority (IANA).

The Internet Assigned Numbers Authority (IANA) has developed a standard that maps a set of integers onto ICMPv6 types. The following table lists the ICMPv6 types and codes defined by the IANA and maps them to the strings literal strings available in the Brocade vRouter.

TABLE 4 ICMPv6 types

ICMPv6 Type	Code	Literal	Description
1 - Destination unreachable		destination- unreachable	
	0	no-route	No route to destination
	1	communication-prohibited	Communication with destination administratively prohibited
	2		Beyond scope of source address
	3	address-unreachable	Address unreachable
	4	port-unreachable	Port unreachable
	5		Source address failed ingress/ egress policy
	6		Reject route to destination
2 - Packet too big	0	packet-too-big	
3 - Time exceeded		time-exceeded	
	0	ttl-zero-during-transit	Hop limit exceeded in transit
	1	ttl-zero-during-reassembly	Fragment reassembly time exceeded
4 - Parameter problem		parameter-problem	
	0	bad-header	Erroneous header field encountered
	1	unknown-header-type	Unrecognized Next Header type encountered
	2	unknown-option	Unrecognized IPv6 option encountered
128 - Echo request	0	echo-request	Echo request (ping)
129 - Echo reply	0	echo-reply	Echo reply (pong)
133 - Router solicitation	0	router-solicitation	Router solicitation
134 - Router advertisement	0	router-advertisement	Router advertisement
135 - Neighbor solicitation	0	neighbor-solicitation (neighbour- solicitation)	Neighbor solicitation
136 - Neighbor advertisement	0	neighbor-advertisement (neighbour-advertisement)	Neighbor advertisement

Supported Interface Types

The following table shows the syntax and parameters of supported interface types. Depending on the command, some of these types may not apply.

Interface Type	Syntax	Parameters
Bridge	bridge brx	<i>brx</i> : The name of a bridge group. The name ranges from brO through br999.
Data plane	dataplane interface-name	<i>interface-name</i> . The name of a data plane interface. Following are the supported formats of the interface name:
		• dp <i>x</i> p <i>y</i> p <i>z</i> —The name of a data plane interface, where
		 dpx specifies the data plane identifier (ID). Currently, only dpO is supported.
		— py specifies a physical or virtual PCI slot index (for example, p129).
		 – pz specifies a port index (for example, p1). For example, dpOp1p2, dpOp16Op1, and dpOp192p1.
		 dpxemy —The name of a data plane interface on a LAN- on-motherboard (LOM) device that does not have a PCI slot, where emy specifies an embedded network interface number (typically, a small number). For example, dpOem3.
		 dpxsy—The name of a data plane interface on a device that is installed on a virtual PCI slot, where xsy specifies an embedded network interface number (typically, a small number). For example, dpOs2.
		 dpxPnpypz—The name of a data plane interface on a device that is installed on a secondary PCI bus, where Pn specifies the bus number. You can use this format to name data plane interfaces on large physical devices with multiple PCI buses. For these devices, it is possible to have network interface cards installed on different buses with these cards having the same slot ID. The value of n must be an integer greater than O. For example, dpOP1p162p1 and dpOP2p162p1.
Data plane vif	dataplane interface-name vif vif-id [vlan vlan-id]	interface-name. Refer to the preceding description.
		vif-id: A virtual interface ID. The ID ranges from 1 through 4094.
		<i>vlan-id</i> . The VLAN ID of a virtual interface. The ID ranges from 1 through 4094.
Loopback	loopback lo or	<i>n</i> : The name of a loopback interface, where <i>n</i> ranges from 1 through 99999.
	loopback lon	
OpenVPN	openvpn vtunx	<i>vtunx</i> : The identifier of an OpenVPN interface. The identifier ranges from vtun0 through vtun x , where x is a nonnegative integer.
Tunnel	tunnel <i>tunx</i> or tunnel <i>tunx</i> parameters	<i>tunx</i> : The identifier of a tunnel interface you are defining. The identifier ranges from tunO through tun <i>x</i> , where <i>x</i> is a nonnegative integer.

Interface Type	Syntax	Parameters
Virtual tunnel	vt i <i>vtix</i>	<i>vtix</i> : The identifier of a virtual tunnel interface you are defining. The identifier ranges from vtiO through vti <i>x</i> , where <i>x</i> is a nonnegative integer. Note: This interface does not support IPv6.
VRRP	parent-interface vrrp vrrp- group group	<i>parent-interface</i> . The type and identifier of a parent interface; for example, data plane dpOp1p2 or bridge br999.
		group: A VRRP group identifier.
		The name of a VRRP interface is not specified. The system internally constructs the interface name from the parent interface identifier plus the VRRP group number; for example, dpOp1p2v99. Note that VRRP interfaces support the same feature set as does the parent interface.

List of Acronyms

Acronym	Description
ACL	access control list
ADSL	Asymmetric Digital Subscriber Line
АН	Authentication Header
AMI	Amazon Machine Image
API	Application Programming Interface
AS	autonomous system
ARP	Address Resolution Protocol
AWS	Amazon Web Services
BGP	Border Gateway Protocol
BIOS	Basic Input Output System
BPDU	Bridge Protocol Data Unit
СА	certificate authority
ССМР	AES in counter mode with CBC-MAC
СНАР	Challenge Handshake Authentication Protocol
CLI	command-line interface
DDNS	dynamic DNS
DHCP	Dynamic Host Configuration Protocol
DHCPv6	Dynamic Host Configuration Protocol version 6
DLCI	data-link connection identifier
DMI	desktop management interface
DMVPN	dynamic multipoint VPN
DMZ	demilitarized zone
DN	distinguished name
DNS	Domain Name System
DSCP	Differentiated Services Code Point
DSL	Digital Subscriber Line
eBGP	external BGP
EBS	Amazon Elastic Block Storage
EC2	Amazon Elastic Compute Cloud
EGP	Exterior Gateway Protocol
ECMP	equal-cost multipath
ESP	Encapsulating Security Payload
FIB	Forwarding Information Base
FTP	File Transfer Protocol
GRE	Generic Routing Encapsulation
HDLC	High-Level Data Link Control
1/0	Input/Output
ICMP	Internet Control Message Protocol

Acronym	Description
IDS	Intrusion Detection System
IEEE	Institute of Electrical and Electronics Engineers
IGMP	Internet Group Management Protocol
IGP	Interior Gateway Protocol
IPS	Intrusion Protection System
IKE	Internet Key Exchange
IP	Internet Protocol
IPOA	IP over ATM
IPsec	IP Security
IPv4	IP Version 4
IPv6	IP Version 6
ISAKMP	Internet Security Association and Key Management Protocol
ISM	Internet Standard Multicast
ISP	Internet Service Provider
KVM	Kernel-Based Virtual Machine
L2TP	Layer 2 Tunneling Protocol
LACP	Link Aggregation Control Protocol
LAN	local area network
LDAP	Lightweight Directory Access Protocol
LLDP	Link Layer Discovery Protocol
MAC	medium access control
mGRE	multipoint GRE
MIB	Management Information Base
MLD	Multicast Listener Discovery
MLPPP	multilink PPP
MRRU	maximum received reconstructed unit
MTU	maximum transmission unit
NAT	Network Address Translation
NBMA	Non-Broadcast Multi-Access
ND	Neighbor Discovery
NHRP	Next Hop Resolution Protocol
NIC	network interface card
NTP	Network Time Protocol
OSPF	Open Shortest Path First
OSPFv2	OSPF Version 2
OSPFv3	OSPF Version 3
PAM	Pluggable Authentication Module
PAP	Password Authentication Protocol
PAT	Port Address Translation
PCI	peripheral component interconnect
PIM	Protocol Independent Multicast
PIM-DM	PIM Dense Mode

Acronym	Description
PIM-SM	PIM Sparse Mode
PKI	Public Key Infrastructure
PPP	Point-to-Point Protocol
PPPoA	PPP over ATM
PPPoE	PPP over Ethernet
PPTP	Point-to-Point Tunneling Protocol
PTMU	Path Maximum Transfer Unit
PVC	permanent virtual circuit
QoS	quality of service
RADIUS	Remote Authentication Dial-In User Service
RHEL	Red Hat Enterprise Linux
RIB	Routing Information Base
RIP	Routing Information Protocol
RIPng	RIP next generation
RP	Rendezvous Point
RPF	Reverse Path Forwarding
RSA	Rivest, Shamir, and Adleman
Rx	receive
S3	Amazon Simple Storage Service
SLAAC	Stateless Address Auto-Configuration
SNMP	Simple Network Management Protocol
SMTP	Simple Mail Transfer Protocol
SONET	Synchronous Optical Network
SPT	Shortest Path Tree
SSH	Secure Shell
SSID	Service Set Identifier
SSM	Source-Specific Multicast
STP	Spanning Tree Protocol
TACACS+	Terminal Access Controller Access Control System Plus
TBF	Token Bucket Filter
ТСР	Transmission Control Protocol
ТКІР	Temporal Key Integrity Protocol
ToS	Type of Service
TSS	TCP Maximum Segment Size
Тх	transmit
UDP	User Datagram Protocol
VHD	virtual hard disk
vif	virtual interface
VLAN	virtual LAN
VPC	Amazon virtual private cloud
VPN	virtual private network
VRRP	Virtual Router Redundancy Protocol

Acronym	Description
WAN	wide area network
WAP	wireless access point
WPA	Wired Protected Access